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Abstract. The cross section for the diffractive reaction γ∗ + p → cc̄ + p with a real or virtual photon
is calculated in the nonperturbative two-gluon exchange model of Landshoff and Nachtmann. Numerical
predictions are given for cross sections and spectra at typical HERA values of c.m. energy and photon
virtuality. The contribution of charm to the diffractive structure function is evaluated and found to be
rather small in the model, and the ratio between the production rates for bb̄ and cc̄ is tiny.

1 Introduction

The discovery of diffractive events in ep collisions at
HERA [1] has triggered a large amount of experimental
and theoretical work and greatly increased our knowledge
of the physics of diffraction, or of the pomeron. Several
models give a reasonable description of the data at the
time being, but we are far yet from a coherent picture of
the mechanisms at work in terms of QCD. One can hope
that the detailed study of the diffractive final state will
lead to further progress in this direction. Charm produc-
tion looks promising in this respect, as predictions for this
process differ widely between various models [2–6].

In this paper we use the approach due to Landshoff
and Nachtmann (LN) to model the soft pomeron by the
exchange of two nonperturbative gluons. We present dif-
ferential cross sections for the diffractive dissociation of
a real or virtual photon into a cc̄-pair. Provided that the
invariant mass of the diffractive final state is not too large
its cc̄-component should give a fair approximation of inclu-
sive diffractive charm production. In the following section
we give some details of the model and of the calculation, in
Sect. 3 we present our results, and in Sect. 4 we summarise
our findings.

2 Diffractive cc̄-production in the LN model

The Landshoff-Nachtmann model has been introduced and
described in [7,8]. It approximates the soft pomeron by
the exchange of two nonperturbative gluons, with a prop-
agator −gµνD(l2) instead of the perturbative −gµν/l2 in
Feynman gauge. In several processes one can express the
scattering amplitude in terms of a few moments of the
function D(l2) and thus does not need to know its de-
tailed form. Here we only need the integral∫ ∞

0
dl2[α(0)

s D(−l2)]2 · l2 =
9β2

0µ
2
0

8π
, (1)

a Unité propre 14 du CNRS

where β0 ≈ 2.0 GeV−1 and µ0 ≈ 1.1 GeV have been ex-
tracted from experimental data [8,9]. The parameter µ2

0
provides the characteristic scale for the dependence of
D(l2) on the gluon virtuality l2, and α

(0)
s stands for the

strong coupling in the nonperturbative region which dom-
inates the l2-integration in (1). It will be taken as α(0)

s ≈ 1
here [9].

We now apply this model to the reaction

γ∗ + p→ cc̄ + p . (2)

In the following we use the conventional variables x, y, s, t,
Q2,W 2 for deep inelastic scattering, M for the invariant
mass of the cc̄-pair, and

β =
Q2

Q2 + M2 − t
, ξ =

Q2 + M2 − t

W 2 + Q2 . (3)

We denote with PT the transverse momentum of the charm
quark with respect to the photon momentum in the γ∗p
c.m.

In the high-energy limit the scattering amplitude for
our process is dominated by its imaginary part and we
can use the cutting rules to calculate it. Then the dia-
grams contributing to (2) are those in Fig. 1 and the ones
obtained by reversing the charge flow of the upper quark
line. In each diagram there is one off-shell quark, the char-
acteristic scale for its virtuality being given by [4,10]

λ2 =
P 2
T + m2

c

1− β
. (4)

For charm production the large quark mass mc protects
this quark from becoming infrared so that a perturbative
treatment of the quark sector should be safe, even in the
photoproduction limit.

The cross section for photons with transverse or longi-
tudinal polarisation in the γ∗p frame has been calculated
in [11,12]. It reads
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Fig. 1. Two of the four Feynman diagrams contributing to the
imaginary part of the amplitude for p+γ∗ → p+cc̄. The other
two are obtained by reversing the charge flow of the upper
quark line. The lower line stands for a constituent quark in
the proton as explained in [11], and the dashed lines denote
nonperturbative gluons

dσT,L
dP 2

T dM
2 dt

=
16
3
αeme2c

αs(λ2)

α
(0)
s

F 2
1 (t) ξ2(1−αIP (t))

× 1
(M2 + Q2)4

1√
1− 4(P 2

T + m2
c)/M2

ST,L , (5)

where ec = 2/3 is the electric charge of the charm quark
in units of the positron charge, and F1(t) the Dirac form
factor of the proton. We have approximated t = 0 for
the squared momentum transfer from the proton, except
in F1(t) and αIP (t), which accounts for most of the t-
dependence in the cross section [12]. αIP (t) ≈ 1.085 +
t/(2 GeV)2 is the soft pomeron trajectory as observed in
hadronic reactions [13]. It is introduced by hand in the
LN model in order to make contact with experiment; the
approximation of bare two-gluon exchange (Fig. 1) would
give a factor ξ0 instead of ξ2(1−αIP (t)) in the cross section
(5). We thus assume that the energy dependence of diffrac-
tive charm production is given by the soft pomeron, and
furthermore that ξ is the correct dimensionless variable to
be raised to the Regge power (1/ξ)αIP (t) in the amplitude.
In our numerical applications we will impose an upper cut
of ξ ≤ 0.05 to remain in a region where the exchange of a
pomeron dominates that of secondary trajectories.

The expressions

ST =
(

1− 2
P 2
T + m2

c

M2

)
P 2
T

P 2
T + m2

c

(M2 + Q2)2 L1(P 2
T , w)2

+
m2

c

P 2
T + m2

c

(M2 + Q2)2 L2(P 2
T , w)2

SL = 4
Q2

M2

P 2
T + m2

c

M2 (M2 + Q2)2 L2(P 2
T , w)2 (6)

in (5) contain integrals L1(P 2
T , w) and L2(P 2

T , w) over the
virtuality of the exchanged gluons,

Li(P 2
T , w) =

∫ ∞

0
dl2 [α(0)

s D(−l2)]2 fi(v, w) , i = 1, 2

(7)

with

f1(v, w) = 1− 1
2w

[
1− v + 1− 2w√

(v + 1− 2w)2 + 4w(1− w)

]

f2(v, w) = 1− 1√
(v + 1− 2w)2 + 4w(1− w)

(8)

and1

v =
l2

λ2 , w =
P 2
T

λ2 . (9)

A simple way to approximate Li is to Taylor expand
the function fi(v, w) about v = 0 and to keep only the
leading term

fi(v, w) ≈ v · ∂fi(v, w)
∂v

∣∣∣∣
v=0

, (10)

after which the integrals reduce to the moment (1) of the
gluon propagator. This is however not very good for small
P 2
T , where the variable v becomes v = (1−β)·l2/m2

c so that
one needs a good approximation of the functions f1(v),
f2(v) for v from zero to order one. A better approximation
which also leads to the moment (1) is

fi(v, w) ≈ v

v0
· fi(v0, w) , v0 =

l20
λ2 (11)

with l20 ∼ µ2
0. Whereas in (10) one approximates the curve

fi(v) by its tangent at v = 0 the approximation (11) uses
instead the line that intersects the curve at v = 0 and
v = v0, the corresponding range in l2 from 0 to l20 being the
dominant region of integration in Li. We have varied the
parameter l20 between µ2

0/2 and 2µ2
0 and found variations

of up to a factor 1.6 in the integrated γ∗p cross sections
σT and σL and variations of less than a factor 2.1 for
cross sections differential in M2 or in P 2

T , together with
some change in the shape of the spectra. The effects are
stronger at small or zero Q2 and more pronounced in the
P 2
T - than in the M2-spectra. These variations may be seen

as reflecting our uncertainty about the exact shape of the
nonperturbative gluon propagator, which determines the
value of l20 for which the approximation (11) is best. As a
benchmark we have compared the approximated integrals
with the exact ones for the model gluon propagator used
in [8],

D(−l2) ∝
[
1 +

l2

(n− 1)µ2
0

]−n
, n ≥ 4 , (12)

where the proportionality constant can easily be obtained
from (1). With (11) the errors of the approximation stay
below 10% for all P 2

T and w we need, whereas the tangent
approximation (10) has errors of 50% and more when one
goes to P 2

T = 0.
Finally a comment is in order about the value of the

strong coupling in our calculation. In the integral (1) it
is taken at a nonperturbative scale given by the domi-
nant virtuality of the exchanged gluons. However, the first

1 The definitions of v and w here differ from those in [11]
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Fig. 2. Spectra in P 2
T and in M2 for γ∗p →

cc̄ p at W = 220 GeV with a cut ξ ≤ 0.05. The
curves are for photoproduction and for electro-
production at Q2 = 20 GeV2 with transverse
or longitudinal photons

gluon in all diagrams couples at its upper end to an off-
shell quark whose virtuality is in the perturbative region.
We choose to take the coupling for this vertex at the scale
λ2 in all four diagrams, and at the small gluonic scale for
the other three vertices. One might argue that λ2 is the
typical scale for the entire upper parts of the diagrams,
and that one should also take the coupling of the second
gluon to the upper quark line at this scale. Note however
that, since we use the cutting rules, the parts of the di-
agrams to the left and the right of the cut lines can be
considered independently, and that the part to the right
of the cut is just on-shell quark-quark or quark-antiquark
scattering with no large virtuality involved. We are aware
though that our choice is only a guess.

It is clear that this question of scales leads to an uncer-
tainty in the normalisation of our predictions. The main
problem is not so much whether λ2 is the best choice of a
hard scale, which is a common problem of all leading order
calculations. Since the moment (1) includes the nonpertur-
bative coupling α

(0)
s we have to multiply the cross section

with αs(λ2)/α(0)
s if at one of the four quark-gluon vertices

we take the perturbative coupling. α(0)
s is not well con-

strained by phenomenology [9] or theory and other choices
than α

(0)
s = 1 which we adopt here have indeed been made

[14].

3 Results

We will now give some numerical predictions for the diffrac-
tive production of charm. We stress once again that we
calculate the cross section for the diffractive final state be-
ing a quark-antiquark pair, which does not include events
with cc̄ and additional gluons at parton level. It is also
different from cc̄-production through photon-gluon fusion
where the gluon is a parton emitted by the pomeron in the
description of Ingelman and Schlein [15] and where the fi-
nal state contains a pomeron remnant. Finally it excludes
events in photoproduction where the photon is resolved.
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Fig. 3. The spectra of Fig. 2 a for a wider range in P 2
T , as a

function of P 2
T + m2

c in a double logarithmic plot. For photo-
production one recognises the power behaviour (13)

Let us start with photoproduction. For W = 220 GeV
and ξ ≤ 0.05 we obtain a total rate σ(γp→ cc̄ p) = 57 nb.
Spectra in P 2

T and M2 are shown in Fig. 2 and 3. The
P 2
T -spectrum is well described by a power behaviour

dσγp
dP 2

T

∝ (P 2
T + m2

c)
−δ (13)

with an exponent δ between 3.7 and 4.3 in the P 2
T -range

of Fig. 3. The spectrum of diffractive mass behaves ap-
proximately like dσγp/dM

2 ∝ M−4.2 to the right of its
peak.

Let us move on to electroproduction and first focus on
the dependence on the γ∗p c.m. energy W of the ep cross
section, obtained from the usual relation

dσep =
αem

π

dW 2

W 2

dQ2

Q2{
(1− y + y2/2) dσT + (1− y) dσL

}
(14)
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where we have used the approximation x� 1. It is deter-
mined by different effects:

1. the integration element dW 2/W 2 in (14)
2. the y-dependent factors multiplying dσT and dσL, note

that at x� 1 one has y ≈ W 2/s. They decrease with
W . As they are different for transverse and longitudi-
nal photons one cannot calculate their effect without
knowing the relative contribution of σT and σL. This
problem is of course absent in the photoproduction
limit.

3. the cut in ξ which ensures that the selected events are
dominated by pomeron exchange. It leads to an upper
limit on the diffractive mass M that depends on W
and Q2 and whose importance is strongest for small
W and large Q2. This effect can be circumvented by
using a fixed cut on M chosen such that ξ is always
small enough, but at the expense of the total rate used
in the analysis.

4. the dependence on W of dσT,L/(dP 2
T dM

2 dt). This
gives direct information about whether or not this pro-
cess is dominated by the soft pomeron. In our model
it comes from the factor ξ2(1−αIP (t)) in (5), i.e. with
W 2 � Q2 it is W 4(αIP (t)−1) which is quite flat given
that the soft pomeron intercept is close to 1.

We find an ep cross section of 120 pb for
√
s = 296 GeV,

ξ ≤ 0.05, integrated over Q2 from 7.5 GeV2 to 80 GeV2

and W from 50 GeV to 220 GeV. Table 1a gives the ep
cross section in three different bins of W . They are spaced
logarithmically to take out the trivial effect of point 1,
above. One might also choose the binning to include the
factor 1− y+ y2/2 if one assumes the longitudinal contri-
bution to the cross section to be small; one then directly
extracts the W -dependence of the integrated γ∗p cross sec-
tion σT . The effects of points 2 and 3 are responsible for
the decrease of the cross section from the second to the
third W -bin in our numerical example. Apart from this
one sees however clearly the flat behaviour in W char-
acteristic of soft pomeron exchange. It might be useful to
analyse experimental data in this way: it focuses on theW -
dependence of the γ∗p cross section and apart from points
2 and 3 does not involve the details of its dependence on
M2 or Q2, so it is relatively model independent. Also it
requires only binning in one variable and thus makes best
use of the available statistics which is likely not to be abun-
dant at HERA. If there were a strong departure from the
soft pomeron energy dependence for these events it should
be seen in such an analysis.

In Table 1b we give the ep cross section in logarithmi-
cally spaced Q2-bins. Since y is nearly independent of Q2

at small x this directly shows the Q2-dependence of the
weighted sum of the integrated transverse and longitudi-
nal γ∗p cross sections.

Examples of ep spectra are shown in Fig. 4 and γ∗p
spectra for transverse and longitudinal photons in Fig.
2. In the M2-spectrum of Fig. 2 b we can see that the
contribution from longitudinal photons is much smaller
than from transverse ones except at very small M2. This
is explained by the factor (P 2

T + m2
c)/M

2 in the differen-
tial cross section for longitudinal polarisation, cf. (6). The

Table 1. σep for ep→ ep cc̄ with
√
s = 296 GeV and ξ ≤ 0.05.

a For Q2 from 7.5 GeV2 to 80 GeV2 and three logarithmically
spaced bins in W . b For W from 50 GeV to 220 GeV and three
logarithmic bins in Q2

(a)
W [ GeV]

50 . . . 82 82 . . . 134 134 . . . 220
39 pb 44 pb 40 pb

(b)
Q2[ GeV2]

7.5 . . . 16.5 16.5 . . . 36.3 36.3 . . . 80
73 pb 36 pb 14 pb

P 2
T -spectrum for transverse photons is less steep than in

photoproduction at its lower end, but at large P 2
T it be-

comes similar in slope and normalisation.
The dip in the P 2

T -spectrum for longitudinal polar-
isation is a consequence of the zero in the longitudinal
cross section at certain values of P 2

T and M2, a charac-
teristic feature of the two-gluon exchange mechanism in
this reaction [4,10,11]. This zero can occur for w > 1/2
because then the function f2(v) and thus the integrand of
L2(P 2

T , w) change sign at v = 2(2w−1), cf. (7) to (9). Us-
ing the approximation (10) we find dσL/(dP 2

T dM
2) = 0 at

w = 1/2, which is underestimated but good enough for the
purpose of our discussion. The corresponding value of M2

decreases with P 2
T and reaches its threshold 4(P 2

T + m2
c)

at P 2
T = m2

c + Q2/4, i.e. at P 2
T = 7.25 GeV2 in Fig. 2

a. Then the effect of the zero on the M2-integrated cross
section is strongest, as we can see from the position of the
dip. Unfortunately this dip becomes completely swamped
in the ep spectrum by the transverse contribution, cf. Fig.
4 a, so that this effect is unlikely to be observed.

The M2-spectra can be rewritten in terms of the charm
contribution to the diffractive structure functions FD(4)

2 ,
F
D(4)
T and F

D(4)
L , defined by

dσep
dx dQ2 dξ dt

=
4πα2

em

xQ4

[(
1− y + y2/2

)
F
D(4)
T + (1− y)FD(4)

L

]
F
D(4)
2 = F

D(4)
T + F

D(4)
L , (15)

where T and L stand for the contributions of transverse
and longitudinal photon polarisation as usual. These func-
tions depend on the kinematic variables x,Q2, ξ, t or, equiv-
alently, on ξ, β,Q2, t. In models with Regge factorisation
this dependence factorises into

F
D(4)
T,L (ξ, β,Q2, t) = fIP (ξ, t) · F IP

T,L(β,Q2, t) , (16)

where in the partonic interpretation of Ingelman and
Schlein [15] fIP (ξ, t) gives the pomeron flux from the pro-
ton and F IP

T,L(β,Q2, t) are the structure functions of the
pomeron.
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Fig. 4. Spectra in P 2
T and in M2 for ep →

ep cc̄ at
√
s = 296 GeV, integrated over ξ ≤

0.05, W = 50 GeV to 220 GeV and Q2 =
7.5 GeV2 to 80 GeV2

Our model has this factorisation property, but this is
because it is put in rather than being one of its predictions:
We calculate two-gluon exchange to leading order in ξ−1,
so that FD(4)

T,L (ξ, β,Q2, t) depends on ξ via a global factor,
and then we modify the exponent of ξ by hand introducing
the soft pomeron trajectory, which preserves factorisation.
Using the flux factor

fIP (ξ, t) =
9β2

0

4π2 [F1(t)]2 ξ1−2αIP (t) (17)

we obtain the curves shown in Fig. 5 for the charm struc-
ture functions F IP

T (cc̄) and F IP
L (cc̄) of the pomeron. We ob-

serve that the transverse structure function shows Bjorken
scaling for rather small β. It can be shown from the expres-
sions (5) and (6) that F IP

T (cc̄) scales under the condition
that the integrated cross section is dominated by values
of P 2

T that are small compared with the upper kinemati-
cal limit M2/4 −m2

c . Because with our values of Q2 the
diffractive mass M is not far from the production thresh-
old 2mc for moderate and large β this condition cannot be
satisfied in this region and there is no scaling. Note also
that at the value of β corresponding to M = 2mc both
F IP
T (cc̄) and F IP

L (cc̄) vanish.
We wish to compare the rate of charm production with

the inclusive diffractive cross section for light flavours u,
d, s, which can also be calculated in our model [11,16].
Let us remark that for light flavours the quark virtuality
λ2 in (4) can become small so that one has to assume that
a perturbative treatment of the quarks, possibly with an
effective quark mass of some 100 MeV, is good enough for
this process. We find that actually the best description of
the HERA data with our model is obtained when just tak-
ing current masses for the u, d and s quarks [16], which we
have done in the results to be shown. For light quarks the
approximations (10) or (11) of the loop integrals L1, L2
can no longer be used unless P 2

T is large so that one has
to resort to a specific form of the gluon propagator D(l2).
The results we show have been obtained using the model
propagator (12) with n = 4 and freezing the running cou-
pling αs(λ2) in (5) when it becomes equal to 1. F IP

T shows

scaling over the entire β-range since there is no strong
threshold effect as for charm at large β. The longitudi-
nal structure function F IP

L is found to behave roughly like
1/Q2 at fixed β and only gives a significant contribution
to F IP

2 when β is large.
Figure 6 shows the result of our calculation of the

ξ-integrated diffractive structure function F̃D
2 (β,Q2) =∫ ξmax

ξmin
dξ

∫
dt F

D(4)
2 (ξ, β,Q2, t) together with HERA data

[17]. We only show one Q2 per experiment as the depen-
dence of FD(4)

2 (ξ, β,Q2, t) on Q2 is found to be weak in the
data, in good agreement with our results. Remember that
our calculation is at Born level and does not incorporate
the effects of QCD evolution of structure functions.

Regarding the overall normalisation we find that agree-
ment is not too bad given that we have done a leading
order calculation and taking into account the uncertainty
in its normalisation due to the strong coupling at differ-
ent scales we discussed in Sect. 2. We also stress that the
parameters of our model, β2

0 , µ2
0 and α

(0)
s , have all be

determined from pre-HERA data and that in this sense
our prediction is parameter free. As to the shape in β the
data clearly do not show a decrease at small β as our re-
sult does. This is not surprising since we only calculate the
qq̄-component of the diffractive final state, and at small
values of β, i.e. at large diffractive mass M final states with
additional gluons are expected to be dominant. Figure 6
indicates that this might be the case for values of β well
above 0.1. We remark that the more recent ZEUS data
[18] indicate a rise of F (D)4

2 as β becomes small whereas
the preliminary H1 data [19] give a very flat behaviour
over the entire β-range.

In Fig. 7 we compare the predictions of the model
for F IP

2 (cc̄) and F IP
2 for the three light flavours, keeping in

mind that neither is expected to be a complete description
at small β. The curves for light quarks are scaled down
by a factor of 20. The fraction of charm comes out quite
small,2 it is not larger than 5% and decreases with β. For

2 The results for the charm contribution to the diffractive
structure function presented here are significantly smaller than
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Fig. 5. Charm structure functions F IP
T (cc̄),

F IP
L (cc̄) of the pomeron for transverse and lon-

gitudinal photon polarisation at different val-
ues of Q2
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Fig. 6. HERA data [17] for the ξ-integrated
diffractive structure function F̃D

2 (β,Q2) =∫ ξmax

ξmin
dξ
∫
dt F

D(4)
2 (ξ, β,Q2, t) compared with

the result in the LN model. Also shown is the
longitudinal contribution F̃D

L to F̃D
2 . Integra-

tion limits are ξmin = 6.3 · 10−4, ξmax = 0.01
in the case of ZEUS and ξmin = 3 · 10−4,
ξmax = 0.05 for the H1 data
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Fig. 7. Pomeron structure function F IP
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for charm compared with 0.05 times F IP
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the three light flavours. a for Q2 = 16 GeV2

and b for Q2 = 25 GeV2
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β >∼ 0.4, where we expect the qq̄-component to dominate
the final state, we find the fraction of charm in F IP

2 to be
below 4%.

We observe that for the longitudinal pomeron struc-
ture function the contribution of charm can be consider-
able. It is largest for β around 0.5 where the ratio between
F IP
L (cc̄) and F IP

L for all flavours can reach values close to
0.6. This is larger than the ratio of the squared electric
charges so that apart from the charge the cross section for
charm exceeds that of a light qq̄-pair. Note that the differ-
ential longitudinal cross section has a suppression factor
(P 2

T +m2
q)/M

2 at small P 2
T which is less efficient for large

quark mass mq. This phenomenon should however be dif-
ficult to observe since the longitudinal part of F IP

2 is tiny
at β ∼ 0.5 and only visible at rather high β and not too
large Q2, where M2 is below the charm threshold.

To conclude we wish to report an observation regarding
the ratio of the rates for diffractive cc̄ - and bb̄ -production.
We compare the integrated cross sections for photopro-
duction, so that the scale Q2 cannot influence this ratio,
taking W = 220 GeV and imposing ξ ≤ 0.05. We checked
that at this W the effect of the phase space reduction
through the cut in ξ is about the same for charm and
bottom: calculating the cross sections for very high W
where the ξ-cut has no effect we verified that the increase
of the cross sections is almost entirely due to the factor
W 4(αIP−1) from pomeron exchange. With mc = 1.5 GeV
and mb = 4.5 GeV we find that the cross section for bot-
tom production is about 440 times smaller than for charm,
implying that this process should be quite impossible to
observe at HERA. Taking out the squared electric charges
and the running strong coupling, which for simplicity we
take here at fixed scales m2

c or m2
b , we obtain

σ(γp→ cc̄ p)
σ(γp→ bb̄ p)

· e
2
b αs(m

2
b)

e2c αs(m2
c)
≈ 71 ≈

(
mb

mc

)3.9

. (18)

Apart from the effect of the running coupling the inte-
grated cross section appears to scale with the quark mass
approximately like 1/m4

q. To check this we have calculated
the photoproduction cross section as a function of mq be-
tween mq = 1.5 GeV and 15 GeV, for very large W so that
the ξ-cut has no effect. Dividing by the running coupling
αs(m2

q) we find indeed an approximate power behaviour in
1/mq with an exponent between 3.6 and 4.2. A behaviour
in 1/m4

q looks like the effect of the off-shell propagators
in the amplitude whose denominators are limited by m2

q.
Notice that the numerators of the propagators, which also
contain one power of mq do not seem to enter in the same
way, their role is more complicated because the numerator
of a quark propagator has a Dirac matrix structure.

4 Summary

We have calculated diffractive production of a cc̄-pair in
γ∗p collisions with real or virtual photons in the model

those given in [11] because there we used the running cou-
pling αs(P 2

T ) which unlike αs(λ2) is not limited from above by
αs(m2

c) and was frozen when it reached the value 1

of nonperturbative two-gluon exchange due to Landshoff
and Nachtmann. This allowed us to give numerical predic-
tions for diffractive charm production at HERA, for cross
sections and spectra in M2 and P 2

T .
In photoproduction we find a γp cross section in the re-

gion of 60 nb for W around 200 GeV. The mass spectrum
peaks at rather low values of M and then falls off roughly
like 1/M4, whereas the spectrum of the transverse mo-
mentum approximately behaves like a power of P 2

T + m2
c

with an exponent around −4.
In diffractive DIS the ep cross section we obtain is of or-

der 100 pb for Q2 from 7.5 GeV2 to 80 GeV2 and W from
50 GeV to 220 GeV. The γ∗p cross sections exhibit a flat
dependence on W , typical of models with soft pomeron
exchange. We suggest that even a coarse logarithmic bin-
ning in W of the ep cross section should be useful to test
this in the data.

Expressing the cc̄ mass spectra in terms of the diffrac-
tive charm structure functions we find that the transverse
contribution F

D(4)
T (cc̄) does not scale for β >∼ 0.3 due to

the restricted phase space at HERA values of Q2. The lon-
gitudinal structure function F

D(4)
L (cc̄) for charm is com-

parable to the transverse one at small diffractive mass M ,
i.e. close to the largest kinematically allowed β at given
Q2, at lower β it is negligible.

We have then compared F
D(4)
2 (cc̄) with the diffractive

structure function F
D(4)
2 for light flavours, calculated in

the same model, which reproduces the HERA data within
a factor of 2 or so, except in the region of small β where the
neglect of final states other that qq̄ becomes a bad approx-
imation. The contribution of cc̄ to the diffractive structure
function F

D(4)
2 comes out below 5% in our model.

The strong quark mass dependence of the integrated
qq̄ cross section can be understood in a simple way from
the denominator of the propagator for the off-shell quark
in the Feynman diagrams, which appears squared in the
cross section. Its typical value is given by 〈λ2〉 = (〈P 2

T 〉+
m2

q)/(1 − β), where 〈P 2
T 〉 is some average P 2

T . For photo-
production of heavy quarks we find indeed a quark mass
dependence of the cross section approximately like 1/m4

q,
which together with the effect of the running strong cou-
pling and the different quark charges leads to a ratio of
bb̄ - to cc̄ -production of 1/440.
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